
ARmy RESEARCH LABORATORY

.......... ...... ...

Analysis of Projectile Penetration
Into .a SiC/Ti Layered Plate

by A. M. Rajendran, D. J. Grove,
and K. D. Bishnoi

ARL-TR-1364 June 1997

19970623 120
Approved for public release; distribution is unirmited.



The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer need. Do not return it
to the originator.



Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5069

ARL-TR-1364 June 1997

Analysis of Projectile Penetration Into
a SiC/Ti Layered Plate

A. M. Rajendran, D. J. Grove
Weapons and Materials Research Directorate, ARL

K. D. Bishnoi
U.S. Army Tank Automotive Research, Development, and Engineering Center

Approved for public release; distribution is unlimited.



Abstract

This report describes the capabilities of the Rajendran-Grove ceramic model in predicting
the depth of penetration in several layered ceramic targets. There are nine constants in the
model. Five constants are adequate to describe the effects of microcracking on strength and
stiffness. The variation of strength of the pulverized ceramic with respect to pressure is
described through two constants. The plastic strain description involves two parameters that can
be determined from a maximum stress vs. strain rate plot. A methodology to estimate these
model constants is outlined in this report. Experimental data from high-velocity plate impact
tests and a penetration test were employed in the calibration of the model constants for silicon
carbide. Using this set of constants, the penetration of a solid tungsten rod into a layered ceramic
target was analyzed. The target configuration consisted of a silicon carbide frontplate glued to
a titanium backplate. The analysis showed that the simulated penetration resistance of the
layered configuration was significantly influenced by the form of the ceramic model's pulverized
strength equation. In addition, maintaining constant areal density, we examined the effects of
different substrate materials (titanium, steel, and aluminum) on the calculated depths of
penetration.
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1. INTRODUCTION

Due to their high compressive strengths and moderate densities, ceramic materials are often employed

in armor design for military vehicles. A layered armor configuration (ceramic backed by metal) tends to

improve penetration resistance while maintaining structural integrity and reducing the mass of the vehicle.

Typically, the armor design process relies solely on the limited data obtained from a series of trial-and-

error ballistic impact experiments. This approach can be time consuming and extremely costly, depending

on the number of experimenkts performed and the cost of manufacturing the armor target configurations.

To reduce these design costs, shock wave propagation codes (hydrocodes) with advanced material models

can be used to simulate some of the proposed experiments and provide preliminary evaluations of the

various armor configurations. Of course, the usefulness of the code analysis is directly related to the

accuracy of the material models used to describe the target materials' dynamic responses to ballistic

impact.

Hydrocodes have become important design tools in armor/antiarmor design calculations. The shock

and high strain rate response of materials are described through constitutive/failure and equation of state

equations. In recent years, several constitutive/damage models [1-5] have been proposed and developed

to describe the impact response of ceramic materials. One of them is a scalar-damage based ceramic

model reported by Rajendran [5]. A brief description of the model is presented in this report. This model

has been successfully implemented in the 1995 version of the EPIC finite element code [6].

In the Rajendran-Grove ceramic failure model [5], the parameters used to describe the microcrack

evolution process can be determined indirectly using stress and/or particle velocity profiles from ceramic

plate impact experiments. Using a shock wave propagation code, each experiment is simulated, and the

microcracking constants are adjusted until the numerical results compare well with the experimental data.

However, the data from this one-dimensional (uniaxial strain) configuration fails to provide information

concerning the compressive strength of the pulverized ceramic material. Ballistic penetration experiments,

wherein a ceramic target plate is confined laterally and backed by a thick steel plate, provide depth-of-

penetration (DOP) data that can be used to calibrate the model parameter that controls the compressive

strength of the pulverized ceramic material. We investigated the penetration resistance of layered targets

consisting of silicon carbide backed by either titanium, steel, or aluminum.

2. CONSTITUTIVE RELATIONSHIPS

The stress-strain equations for the microcracked aggregate material are given by,

oi = M F' (1)

The components of the stiffness tensor M are derived by Margolin [7]. The pressure is calculated through

the Mie-Gruneisen equation of state. For porous ceramics, the intact bulk and shear moduli are corrected

for porosity using Mackenzie's correction factors [8]. In the ceramic model, microcrack damage is

measured in terms of a dimensionless microcrack density y, which is defined as
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"y=Noa . (2)

No* is the average number of microflaws per unit volume, and a is the maximum microcrack size which

is treated as an internal state variable. The microcracks extend when the stress state satisfies a generalized

Griffith criterion [9,10]. This criterion permits microcrack extension under all three crack growth modes.

In the Griffith criterion for shear crack extension [10], the dynamic coefficient of friction, gt, appears as

a model constant. As Equation (2) indicates, microcrack extension causes the microcrack density y to

increase, which results in stress relaxation in the cracked ceramic material. Since N0 * is assumed to be

a constant in the model, any increase in y is entirely due to increase in the crack size. It is possible to

modify the model to allow for the evolution of No*.

The damage evolution law is derived from a fracture mechanics based relationship for a single crack

propagating under dynamic loading conditions, and the law is described by

amx = nI C [1 r~](3)
where CR is the Rayleigh wave speed, G, is the critical strain energy release rate, and G, is the applied

strain energy release rate. The model parameters n1 and n2 are employed to limit the microcrack growth

rate. For mode I crack opening (tensile loading), n, and n2 are both assumed to be 1. However, since the

microcrack growth rate tends to be lower during compressive loading (mode II), a different set of

parameters, nj- and n2-, must be calibrated for this case.

Shockey et al. [11] and Curran et al. [12] address many of the deformation mechanisms in confined

ceramics under ballistic impact loading conditions. These studies clearly established the presence of

dislocations and twinning in the brittle ceramics due to high pressures and high strain rate loading

conditions. The following strength model is used to describe plastic flow in ceramics during high strain

rate loading:

Y=A(I+Clnt*) ,(4)

where A is the initial yield strength, C is the strain rate sensitivity parameter, and V is the normalized

equivalent plastic strain rate. A is assumed to be equal to the compressive strength at HEL (YHED). C is

calibrated by matching the shape of the plastic portion of the shock wave profile.

In the Rajendran-Grove model, the comminuted ceramic strength (Y ) varies with confinement pressure

(P). The compressive strength of the pulverized ceramic is described by the following Mohr-Coulomb

type relationship:

y = a + P , (5)
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where ax is the minimum strength and P3 is the slope of the linear strength-pressure relationship above u.

To simplify the calibration scheme, ax is generally assumed to be zero; in this case, the post-fracture

strength of the ceramic is directly proportional to the applied pressure. Since the one dimensional plate

impact experimental configuration is relatively insensitive to P3, the calibration of this model parameter

requires a series of finite element simulations of a ballistic penetration experiment involving a laterally

confined ceramic target plate.

In summary, there are six microcrack model constants: No, a,, p, Kc, n,-, and n2. Direct

measurements of No*, a0 , y, n,-, and n2 from impact experiments or from photomicrographs are, in

general, very difficult or not feasible. Therefore, suitable values were determined from plate impact

experiment simulations. The following subsections discuss the effects of the various ceramic model
parameters on the simulated velocity profiles from a silicon carbide (SiC) plate impact test configuration.

2.1 Number of Flaws, N,2. Three simulations were considered using values of 1011, 109, and 10' m-3

for N,*. The value of 1 07 did not produce complete spall fracture. The intermediate value of 109 produced
minimal compressive cracking followed by complete spall due to tensile cracking. The high value of 1011

caused excessive damage under compression, significantly affecting the loading portion of the computed

velocity profile. Based on these simulations, 109 m-3 seems to be a reasonable value for No* to cause spall

without excessive compressive damage.

2.2 Initial Microcrack Size, a.. To investigate the effect of initial microcrack size on ceramic

fracture, three plate impact simulations with a, values of 0.1 micrometer (pm), 0.2 pm, and 0.5 pm were

considered. In these simulations, p was 0.1 and No* was 109 m-3. No microcracking occurred for values

of a, less than or equal to 0.1 pm. Partial spall occurred with a, = 0.2 pm, and initial crack sizes greater
than 0.35 pm induced complete spall in the target. The influence of a, on the velocity profile varies with

different combinations of p and No*. For silicon carbide, a0 was calibrated to be 0.5 pm.

The modeling of low velocity (below HEL) experiments required a larger value (>10 pm) for a, to

match the spall signal. Using a single value for a0, Rajendran and Dandekar [13] reproduced the measured

wave profiles (below and above HEL).

2.3 Coefficient of Friction, p. Several simulations were performed to investigate this influence. The
value for this parameter is closely tied to the values chosen for some of the other model constants,

especially the compressive crack growth factor n,-. For instance, the effect of p was insignificant for

n,- = 0.1, whereas the effect became significant for nh- = 0.2.

In the simulations, lower values of p tended to cause premature microcracking while the shock

amplitude was still increasing during the "plastic" wave ramp. Since the compressive microcracking
occurred well above the threshold level of "complete spall (under tension)," the influence of u on the spall
signal was negligible. This study suggests that a minimum value which will not cause any premature

compressive damage shall be assigned to p. In fact, this minimum value will allow the independent
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determination of the other constants. When calibrating the model constants for SiC, a value of 0.1 was

assumed for p.

2.4 Fracture Toughness, Kc, The ceramic model does not contain a microflaw nucleation model.

Flaws are assumed to exist in the virgin ceramic material and are activated when the stress state satisfies

the Griffith criterion for an initial flaw of size a.. Values of Kc between I and 20 MPa-fm did not show

any effect on the wave profiles. Based on handbook values, a static fracture toughness (K1c) of 4 MPafm

was assumed for SiC.

2.5 Compressive Crack Growth Factor, n-. This model constant limits the microcrack growth rate

(see Equation (3)) under compression to nl-CR. When the Griffith criterion is satisfied for a given stress

state, the time dependent microcrack extension controls the rate at which the elastic moduli are degraded.

This degradation affects the shock wave speed and this, in turn, affects the pulse duration. Unfortunately,

the limiting dynamic crack propagation velocity under mode II (crack sliding) conditions cannot be

experimentally measured.

Based on plate impact simulations, values of n[ lower than 0.1 did not introduce any further change

in the velocity profile. Increasing n- to 0.2 widened the pulse width due to elastic moduli degradation.

The shock amplitude diminished as the compressive microcracking increased with increasing n,-. The

spall rebound portion of the velocity profile was not significantly affected by the n- variations. Thus,

n[- was assumed to be 0.1.

2.6 Compressive Crack Growth Index, n-. To evaluate the effect of n2- on the velocity profile,

several simulations were performed. The results showed that the computed profiles were unaffected by

n•. Since the ratio between G, and G, is very small at impact velocities above 1 kin/s, varying this index

between 0.001 and 1 did not alter the ceramic response. Two additional simulations at lower velocities

also produced very similar wave profiles. Therefore, we set n2- equal to 1.0 for SiC.

However, this index does influence the computed stress history in a ceramic rod due to an impact by

a similar rod at low velocity. In the rod-on-rod configuration, the stress state is uniaxial and the strain

state is multiaxial, whereas in the plate impact configuration, the stress state is multiaxial and the strain

state is uniaxial.

2.7 Post-Fracture Strength Parameters, cx and 13. The plate impact experimental configuration

seems to be insensitive to these parameters. The simulations with three different values of f3 showed
hardly any effect on the computed velocities profiles as can be seen in Figure 1. The average spall signal

between points E and F in the figure is almost the same for the three values. Also, the computed velocity
profiles for aL = 1, 5, and 10 kbars were nearly identical to those shown in Figure 1. Therefore, in the

microcrack model constant calibration scheme, Cx was set to 0 and 03 was set to 1.
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Figure 1. The effect of the post-fracture strength model parameter P3 on the computed velocity
profile.

5



3. PLATE IMPACT SIMULATIONS

The model parameter calibration procedure described in the previous section employed data from the

high-velocity SiC plate impact experiments reported by Kipp and Grady [14]. Figure 2 compares the

EPIC code generated velocity versus time with the measured profile from the lower velocity plate impact

experiment (v = 1542 m/s). The model reproduced all the salient features of the data.

A higher velocity (2100 m/s) plate impact experiment was also simulated using the same set of values

for the model constants. The predicted velocity profile matched the data extremely well [15].

4. DOP EXPERIMENT SIMULATIONS

We also considered a penetration configuration wherein a SiC ceramic tile is laterally confined by a

steel frame that is mechanically clamped to a thick steel backup plate. The projectile is a long tungsten

rod (L/D = 10). EPIC95 code simulations of this penetration experiment were performed using the

Rajendran-Grove ceramic failure model. Based on this analysis, the pulverized ceramic strength constant

0 was calibrated to match the measured DOP for one ceramic tile thickness. Using the same set of

parameters, the ceramic model successfully predicted the measured DOP for two other ceramic tile

thicknesses.

While the parameter P3 did not influence the velocity profiles from plate impact simulations, it did

significantly influence the results of the DOP simulations. Therefore, using the microcracking model

parameters determined from plate impact data, penetration simulations can be used to calibrate the ceramic

model's pulverized strength parameter P3.

4.1 Experimental Configuration. The penetration experiment configuration consisted of a square

silicon carbide tile confined laterally by a steel frame. The entire target assembly was mechanically

clamped to a thick steel backup plate. The ceramic tiles were 152.4 mm wide, and three different tile

thicknesses were investigated: 25.4, 38.1, and 50.8 mm. The projectile was a tungsten rod, 79 mm long

and 7.9 mm in diameter (L/D = 10), with an impact velocity of 1500 m/s. The experimental data

consisted of the rod's DOP into the backup plate.

We used the two-dimensional (2D) axisymmetric option in EPIC to approximate the above geometry.

With this assumption, the target plates and confinement frame were modeled as being circular instead of

square. In the simulations, the Rajendran-Grove model described the dynamic response of the ceramic,

while standard EPIC material models were used to describe the behavior of the tungsten rod and the steel

backup plate. Figure 3 shows the configuration for the 25.4-mm-thick ceramic tile.
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Figure 2. A comparison between model generated and experimental velocity profiles at impact
velocity 1542 m/s.
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Tungsten Rod ->
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Figure 3. EPIC finite element grid for penetration configuration (with 25.4-mm-thick ceramic tile),
used to calibrate the pulverized material strength parameter [3.
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4.2 Calibration Results. The Rajendran-Grove model employs a generalized Griffith criterion to

initiate microcrack growth under both tensile and compressive stress states. In this model, the crack

density (a state variable) increases as the microcracks extend. When the crack density reaches a critical
value, the damaged ceramic material is assumed to pulverize (under compression). After pulverization,

the material has no tensile strength, and its compressive strength is governed by Equation (5).

Based on velocity profiles from high-velocity plate impact experiments, the model parameters that

characterize the growth of microcracks had previously been determined for silicon carbide [15,16].

Unfortunately, as subsection 2.1 indicates, the pulverized strength parameter 03 cannot be determined from

plate impact experimental data. We calibrated P3 by adjusting it until the simulated DOPs matched the

experimental results. It is important to note that the microcrack evolution parameters can also significantly

affect the ceramic target's simulated penetration resistance. For this study, however, we employed the

values of those parameters that had been determined from the plate impact data.

For j3 = 1 (YP = P), the calculated penetration depths were significantly less than the experimental

measurements. With no upper bound on the strength of the pulverized material, its penetration resistance

was apparently unrealistically high. Reducing P3 to a value of 0.6 resulted in very good agreement between

the simulated and measured DOP data, as shown in Figures 4-6. The dashed lines in these figures indicate

the experimentally measured DOPs.

4.3 Effect of Imposing Upper Limit on Strength of Pulverized Material. When Equation (5) is

used to describe the compressive strength of the pulverized ceramic material, the strength is permitted to
increase (without bound) as the pressure increases. Such behavior may be reasonable for lower pressures.

However, for very high-velocity penetration configurations, the pressures at the projectile/target interface
can become extremely high. Intuitively, there must be a limiting value for the compressive strength of
the pulverized ceramic; certainly it must be lower than that of the intact ceramic material. Accordingly,

the Johnson-Holmquist constitutive model for brittle materials [4] defines a strain rate dependent maximum
strength for the fractured material.

To investigate the effect of imposing an upper limit on the strength of the pulverized ceramic material,
we implemented the following simple expression in the Rajendran-Grove model to describe the

compressive strength of the post-fractured material:

Y = min[Y , (XP)] , (6)

where Y., and X are model parameters. Yma, is a constant that defines the upper limit on the strength of

the pulverized material, and X is the slope of the linear strength-pressure relationship below Yr,..

Using this modified Rajendran-Grove ceramic failure model, we calibrated Y,,, and X• to match the
DOP data. To simplify this procedure, X was assumed to be equal to 1; the optimum value for Y,,, was

found to be 4 GPa_ The computed DOPs were almost identical to those illustrated in Figures 4-6.

9



-IX

Figure 4. Comparison of calculated DOP with experimental measurement for 25.4-mm-thick ceramic

tile (f3 = 0.6).
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Figure 5. Comparison of calculated DOP with experimental measurement for 38.1-mam-thick ceramic
tile (13 = 0.6).
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Figure 6. Comparison of calculated DOP with experimental measurement for 50.8-mm-thick ceramic
tile (• = 0.6).
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Using the calibrated values for f3 and Y,,,,, Figure 7 compares Equations (5) and (6). In this figure,

the dashed (Equation (5)) and solid (Equation (6)) lines indicate how strength varies with pressure for the

two expressions. At lower pressures (below 6.67 GPa), Equation (5) predicts significantly lower strength

for the confined ceramic powder. Beyond 6.67 GPa, the expression predicts continuously increasing

strength with increasing pressure; this means that the material's penetration resistance will also increase

indefinitely with the pressure. Equation (6), on the other hand, predicts higher strength for the pulverized

material at lower pressures, and then imposes a limit on the strength at higher pressures. This strength

model, which also limits the penetration resistance of the confined ceramic powder, seems more

appropriate for describing the penetration process in a confined ceramic target.

5. BALLISTIC PENETRATION ANALYSIS OF LAYERED TARGET PLATE

Using EPIC95 and the Rajendran-Grove ceramic failure model to describe the dynamic response of

the ceramic material, we simulated a ballistic penetration configuration involving a silicon carbide front

plate glued to a titanium backplate. Using previously calibrated ceramic model constants for silicon

carbide [15-17], we investigated the influence of the pulverized material strength model on the target's

penetration resistance. In addition, maintaining constant areal density, we investigated the effects of

replacing the titanium substrate material with steel and aluminum.

5.1 Baseline Penetration Configuration. The baseline penetration configuration consisted of a

circular silicon carbide plate glued to a circular titanium backplate. Both target plates were 152.4 mm in

diameter; the ceramic plate was 28.575 mm thick, and the titanium plate was 25.4 mm thick. The

projectile was a 214-g tungsten rod, 52.4 mm long and 17 mm in diameter (L/D = 3), with an impact

velocity of 1149 m/s.

We used the 2D axisymmetric option in EPIC to model the above geometry. The bond between the

two plates was modeled as infinite cohesion; one continuous grid was used to describe the target. Also,
the edges of the target plates were assumed to be rigidly clamped. In the simulations, the Rajendran-

Grove model described the dynamic response of the silicon carbide, while standard EPIC material models

were used to describe the behavior of the tungsten rod and the titanium backup plate. Figure 8 shows the

baseline configuration.

5.2 Comparison of Results Using Two Different Equations for Pulverized Material Strength.

Subsection 4.3 indicated that both pulverized strength expressions (see Equations (5) and (6)) could be

calibrated to match DOP data from ballistic penetration experiments involving laterally confined ceramic
tiles backed by thick steel plates. The calibrated values for the Equation (5) parameters were cx = 0 and

P = 0.6, while those for Equation (6) were k = 1 and Yma, = 4 GPa. Both pulverized strength equations
produced nearly identical calculated DOPs for each of three different ceramic tile thicknesses. Equation

(6), which limits the penetration resistance of the confined ceramic powder, seems more appropriate for

describing the penetration process in a confined ceramic target.
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Figure 7. Comparison of pulverized material strength as a function of pressure between Equation
(5) (a = 0 and 03=0.6) and Equation (6) (k = 1 and Ym, = 4 GPa).
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Figure 8. Baseline impact configuration for penetration analysis of layered target plate.
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To investigate the sensitivity of the layered target configuration to the form of the pulverized strength

equation, the baseline penetration configuration (see Figure 8) was simulated using both Equations (5) and

(6) with the calibrated parameters from references [15-17]. As Figures 9 and 10 illustrate, Equation (5)

predicted a complete perforation of the target (exit velocity = 209 m/s), while Equation (6) predicted only

partial penetration with a permanent bulge in the titanium substrate.

At lower pressures, Equation (6) predicts higher pulverized material strengths than Equation (5).

Apparently, the corresponding increase in penetration resistance is sufficient to defeat the projectile.

Figure 11 compares the penetration depths versus time from the two simulations; the dashed line

corresponds to Equation (5), while the solid line represents Equation (6). The two profiles are identical

during the first 15 ps. After the ceramic material begins to pulverize, however, the influence of the

pulverized strength equation becomes apparent. The simulation that employed Equation (6) predicted

greater erosion and deceleration rates in the penetrating rod due to the higher strength of the pulverized

ceramic material.

5.3 Influence of Substrate Material on Calculated Penetration Depths. Using Equation (6) to

describe the strength of the pulverized ceramic material, we investigated the influence of the substrate

material on the calculated penetration process. To accomplish this, the baseline penetration configuration

was simulated with RHA steel and 6061-T6 aluminum backplates.

For comparison purposes, we maintained constant areal density in the layered target plate. In the

baseline configuration, the areal densities of the ceramic and titanium plates were about 91 kg/n 2

(18.6 psf) and 112 kglm2 (23 psf), respectively, for a total areal density of 203 kg/m2 (41.6 psf). This

areal density required a steel substrate thickness of about 14.4 mm and an aluminum substrate thickness

of about 41.6 mm in the EPIC simulations. As Figures 12 and 13 show, the steel substrate performed as

well as the titanium, but the aluminum substrate was unable to stop the rod (exit velocity = 570 m/s).

6. SUMMARY AND RECOMMENDATIONS

The Rajendran-Grove ceramic failure model was successfully implemented in the 1995 version of

EPIC. The modified EPIC code was subsequently used to simulate an experimental configuration

consisting of a long tungsten rod penetrating a silicon carbide ceramic tile that was laterally confined and

backed by a massive steel holder. Employing previously determined model parameters to describe the

evolution of microcrack damage in the ceramic, the model's pulverized strength parameter was calibrated

to match the experimentally measured DOP data for three different ceramic tile thicknesses.

The pulverized strength equation was then revised to include an upper limit, or "cap," on the strength

of the post-fractured material. After calibration, this new model predicted penetration depths nearly

identical to those of the original pulverized strength model.
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Figure 9. Simulation of baseline penetration configuration using Equation (5) to describe the
strength of the pulverized ceramic material ((x = 0, f3 = 0.6).
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Figure 10. Simulation of baseline penetration configuration using Equation (6) to describe the
strength of the pulverized ceramic material (k = 1, Ymx = 4 GPa).
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Figure 12. Simulation of baseline penetration configuration with steel substrate, using Equation (6)

with = 1 and Y =4 GPa.
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Figure 13. Simulation of baseline penetration configuration with aluminum substrate, using Equation
(6) with= 1 and Y,,,, = 4 GPa.
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The modified EPIC code was also used to investigate the penetration of a tungsten rod into a layered
target consisting of a silicon carbide ceramic plate glued to a titanium backplate. In simulations of this

penetration configuration, the Rajendran-Grove model was used to describe microcrack damage evolution

in the ceramic material, and two different equations were employed to define the compressive strength of

the pulverized material (as a function of pressure). Using previously calibrated parameters, the unbounded
pulverized strength equation predicted significantly less penetration resistance than the bounded equation.

Using the equation that imposes an upper bound on the strength of the pulverized ceramic material, the
effects of substrate material on the layered target's penetration resistance were also investigated.

Maintaining constant areal density in the target, the simulations predicted that a steel backing performs

as well as titanium, while an aluminum backplate is unable to defeat the tungsten projectile.

Other penetration configurations should be simulated to further investigate the generality of the

proposed Rajendran-Grove ceramic failure model constants. Higher penetration velocities would be useful

in confirming the upper limit on the strength of the post-fractured material.
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5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,

technical content, format, etc.)

Organization

CURRENT Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)
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